Cutaneous immune system: Age specificities

Abstract - 30 PDF - 9
Markelova Elena Vladimirovna, Yana Alexandrovna Yutskovskaya, Birko Oksana Nikolaevna, Bajbarina Elena Valerjevna, Natalya Sergeevna Chepurnova

Abstract


The review is dedicated to the modern concepts in understanding the age-related changes of skin protective functions, with an emphasis on the impairments in interaction between the immune cells of innate and acquired immunity, resulting in a decrease in antigen-specific T cell immune surveillance in the skin. We discuss the various defects of T cells and their environment as well as focus on the issue of possible correction of T-reg and other cells activity in the skin which would increase the level of immune surveillance in elderly persons and reduce the risk of malignant neoplasms or skin infections developing.


Keywords


skin; innate and adaptive immunity; aging

Full Text:

PDF

References


Jarilin AA. КОЖА И ИММУННАЯ СИСТЕМА (Russian) [The skin and the immune system]. Kosmetika i medicina 2001; 2: 5–13.

Karaulov AV, Bykov SA, Bykov AS. ИММУНОЛОГИЯ, МИКРОБИОЛОГИЯ И ИММУНОПАТОЛОГИЯ КОЖИ (Russian) [Immunology, microbiology and skin immunopathology]. Moskva: Izdatel'stvo BINOM; 2012.

Laube S. Skin infections and ageing. Ageing Res Rev 2004; 3(1): 69–89. doi: 10.1016/j.arr.2003.08.003.

Bazarnyj VV. Иммунная система кожи (Russian) [The immune system of the skin]. Mezoterapija 2011; 2(14): 28–36.

Parahonskij AP. РОЛЬ ИММУННЫХ МЕХАНИЗМОВ В СТАРЕНИИ ОРГАНИЗМА (Russian) [The role of immune mechanisms in the aging body]. Mezhdunarodnyj zhurnal prikladnyh i fundamental'nyh issledovanij 2011; 6: 74.

Sepiashvili RI. Физиология иммунной системы (Russian) [Physiology of the immune system]. Moskva: Medicina – Zdorov'e 2015.

Bojarskih UA, Surovceva MN, Smetanina MA, Kel' A. Je, Serov OL, et al. Увеличение экспрессии цитокинов, сопровождающее старение фибробластов человека in vitro (Russian) [Increased expression of cytokines, accompanied by the aging of human fibroblasts in vitro]. Vestnik Novosibirskogo gosudarstvennogo universiteta 2012; 10(3): 11–18.

Hardeland R. Melatonin and the theories of aging: A critical appraisal of melatonin’s role in antiaging mechanisms. J Pineal Res 2013; 55(4): 325–356. doi: 10.1111/jpi.12090.

Gomez CR, Plackett TP, Kovacs EJ. Aging and estrogen: Modulation of inflammatory responses after injury. Exp Gerontol 2007; 42(5): 451–456. doi: 10.1016/j.exger.2006.11.013.

Mahbub S, Brubaker AL, Kovacs EJ. Aging of the innate immune system: An update. Curr Immunol Rev 2011; 7(1): 104–115.doi: 10.2174/157339511794474181.

Kovacs EJ, Palmer JL, Fortin CF, Fulop T Jr, Goldstein DR, et al. Aging and innate immunity in the mouse: Impact of intrinsic and extrinsic factors. Trends Immunol 2009; 30(7): 319–324. doi: 10.1016/j.it.2009.03.012.

Jing Y, Shaheen E, Drake RR, Chen N, Gravenstein S, et al. Aging is associated with a numerical and functional decline in plasmacytoid dendritic cells, whereas myeloid dendritic cells are relatively unaltered in human peripheral blood. Hum Immunol 2009; 70(10): 777–784. doi: 10.1016/j.humimm.2009.07.005.

Shaw AC, Joshi S, Greenwood H, Panda A. Lord J.M. Aging of the innate immune system. Curr Opin Immunol 2010; 22(4): 507–513. doi: 10.1016/j.coi.2010.05.003.

Markelova EV, Prosekova EV, Skljar LF, Chepurnova NS, Nagornaja AV. Персистирующие вирусные инфекции: этиология и иммунопатогенез (Russian) [Persistent viral infections]. Vladivostok: Medicina-DV 2016.

Agius E, Lacy KE, Vukmanovic-Stejic M, Jagger AL, Papageorgiou AP, et al. Decreased TNF-α synthesis by macrophages restricts cutaneous immunosurveillance by memory CD4+ T cells during aging. J Exp Med 2009; 206(9): 1929–1940. doi: 10.1084/jem.20090896.

Papakonstantinou E, Roth M, Karakiulakis G. Hyaluronic acid: A key molecule in skin aging. Dermatoendocrinol 2012; 1(4):253–258. doi: 10.4161/derm.21923.

Zhaoping Q, Voorhees JJ, Fisher GJ, Quan T. Age-associated reduction of cellular spreading/mechanical force up-regulates matrix metalloproteinase-1 expression and collagen fibril fragmentation via c-Jun/AP-1 in human dermal fibroblasts. Aging Cell 2014; 13(6): 1028–1037. doi: 10.1111/acel.12265.

Ågren MS, Schnabel R, Christensen LH, Mirastschijskif U. Tumor necrosis factor-α-accelerated degradation of type I collagen in human skin is associated with elevated matrix metalloproteinase (MMP)-1 and MMP-3 ex vivo. Eur J Cell Biol 2015; 94(1): 12–21. doi: 10.1016/j.ejcb.2014.10.001.

Xia W, Hammerberg C, Li Y, He T, Quan T, et al. Expression of catalytically active matrix metalloproteinase-1 in dermal fibroblasts induces collagen fragmentation and functional alterations that resemble aged human skin. Aging Cell 2013; 12(4): 661–671. doi: 10.1111/acel.12089.

Montecino-Rodriguez E, Berent-Maoz B, Dorshkind K. Causes, consequences, and reversal of immune system aging. J Clin Invest 2013; 123(3): 958–965. doi: 10.1172/JCI64096.

Bennett MF, Robinson MK, Baron ED, Cooper KD. Skin immune systems and inflammation: Protector of the skin or promoter of aging? J Investig Dermatol Symp Proc 2008; 13(1): 15–19. doi: 10.1038/jidsymp.2008.3.

Zurochka AV, Suhovej JuG, Zurochka VA. ДОЗОЗАВИСИМЫЕ ЭФФЕКТЫ АНТИБАКТЕРИАЛЬНОГО ДЕЙСТВИЯ СИНТЕТИЧЕСКОГО ПЕПТИДА АКТИВНОГО ЦЕНТРА GM-CSF (Russian) [Disability effects of antibacterial action of synthetic peptide of the active site of GM-CSF]. Infekcija i immunitet 2012; 2(3): 657–660.

Jamshhikova EV, Orlov DS, Pazina TJu. ВЛИЯНИЕ АНТИМИКРОБНОГО ПЕПТИДА БАКТЕНЕЦИНА 5 И ЕГО УКОРОЧЕННЫХ ФРАГМЕНТОВ НА ПРОЛИФЕРАЦИЮ ФИБРОБЛАСТОВ КОЖИ ЧЕЛОВЕКА И НА ПРОЦЕСС ЗАЖИВЛЕНИЯ РАН У ЭКСПЕРИМЕНТАЛЬНЫХ ЖИВОТНЫХ (Russian) [Effect of antimicrobial peptide bactenecin 5 and its shorter fragments on proliferation of human skin fibroblasts and the wound healing process in experimental animals]. Ovremennye problemy nauki i obrazovanija 2012; 3. Avalible from: http://www.science-education.ru/103-6127.

Gankovskaja LV, Bogomil'skij MR, Gankovskaja OA. РОЛЬ ДЕФЕНСИНОВ КАК ФАКТОРОВ ВРОЖДЕННОГО ИММУНИТЕТА В ЗАЩИТЕ ОРГАНИЗМА ДЕТЕЙ С ТЯЖЕЛЫМИ ФОРМАМИ ПАРАТОНЗИЛЛИТОВ (Russian) [The role of defensins as factors of innate immunity in protecting the body children with severe paratonsillitis]. Jepidemiologija i Vakcinoprofilaktika 2011; 5: 30–33.

Aleshina GM, Jankelevich IA, Kokrjakov VN. РАЗРАБОТКА ИММУНОФЕРМЕНТНОЙ ТЕСТ-СИСТЕМЫ ДЛЯ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ДЕФЕНСИНОВ ИЗ НЕЙТРОФИЛЬНЫХ ГРАНУЛОЦИТОВ КРЫС (Russian) [Development of enzyme immunoassay system for quantitative determination of defensins from neutrophils of rats]. Biologicheskie nauki 2013; 11: 1347–1351.

Hemshekhar М, Anaparti V, Mookherjee N. Functions of cationic host defense peptides in immunity. Pharmaceuticals 2016; 9(3): 40. doi: 10.3390/ph9030040

Auvynet C, Rosenstein Y. Multifunctional host defense peptides: Antimicrobial peptides, the small yet big players in innate and adaptive immunity. FEBS Journal 2009; 276(22): 6497–6508. doi: 10.1111/j.1742-4658.2009.07360.x.

Gibson AL, Thomas-Virnig CL, Centanni JM, Schlosser SJ, Johnston CE, et al. Non-viral human beta defensin-3 expression in a bioengineered human skin tissue: A therapeutic alternative for infected wounds. Repair Regen 2012; 20(3): 414–424. doi: 10.1111/j.1524-475X.2012.00786.x.

Clausen ML, Jungersted JM, Andersen PS, Slotved HC, Krogfelt KA, et al. Human β-defensin-2 as a marker for disease severity and skin barrier properties in atopic dermatitis. Brit J Dermatol 2013; 169(3): 587–593. doi: 10.1111/bjd.12419.

Wittersheim M, Cordes J, Meyer-Hoffert U, Harder J, Hedderich J. Differential expression and in vivo secretion of the antimicrobial peptides psoriasin (S100A7), RNase 7, human β-defensin-2 and -3 in healthy human skin. Exp Dermatol 2013; 22(5): 358–379. doi: 10.1111/exd.12133.

Kuznecov SL, Gorjachkina VL, Comartova DA, Zaborova VA, Lucevich OA. СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О СТРУКТУРЕ И ФУНКЦИЯХ ЭПИДЕРМИСА (Russian) [Modern ideas about the structure and functions of the epidermis]. Rossijskij zhurnal kozhnyh i venericheskih boleznej 2013; 2: 26–32.

Byrne A, Al-Bader T, Kerrigan D, Rawlings AD. Synergistic action of a triple peptide complex on an essential extra-cellular matrix protein exhibits significant anti-aging benefits. J Cosmet Dermatol 2010; 9(2): 108–16 doi: 10.1111/j.1473-2165.2010.00494.x.

Reva IV, Reva GV, Jamamoto T, Mozhilevskaja ES, Danilenko MV, et al. РЕГУЛЯЦИЯ ПРОЛИФЕРАТИВНОЙ АКТИВНОСТИ ЭПИТЕЛИЕВ (Russian) [Regulation of the proliferative activity of the epithelium]. Fundamental'nye issledovanija 2014; 4: 343–346.

Bangert C, Brunner PM, Stingl G. Immune functions of the skin. Clin Dermatol 2011; 29(4): 360–376. doi: 0.1016/j.clindermatol.2011.01.006.

Shaw AC, Panda A, Joshi SR, Qian F, Allore HG, et al. Dysregulation of human Toll-like receptor function in aging. Ageing Res Rev 2010; 10(3): 346–353. doi: 10.1016/j.arr.2010.10.007.

Abdrashitova AT, Belolapenko IA, Buchin VN. РОЛЬ БЕЛКА Р53 И ИНТЕРЛЕЙКИНОВ 8, 10, 18 В РАЗВИТИИ ПРЕЖДЕВРЕМЕННОГО СТАРЕНИЯ ЛИЦ, ЗАНЯТЫХ НА ПРОИЗВОДСТВЕ ПО ДОБЫЧЕ ГАЗА (Russian) [Role of P53 protein and interleukin-8, interleukin-10, interleukin-18 in the development of premature aging of persons engaged in the production of gas production]. Kubanskij nauchnyj medicinskij vestnik 2011; 3(126): 8–12.

Akbar АN, Henson SM. Are senescence and exhaustion intertwined or unrelated processes that compromise immunity? Nat Rev Immunol 2011; 11(4): 289–295. doi: 10.1038/nri2959.

Schwarz A, Noordegraaf M, Maeda A, Torii K, Clausen BE, et al. Langerhans cells are required for UVR-induced immunosuppression. J Invest Dermatol 2010; 130(5): 1419–1427. doi: 10.1038/jid.2009.429.

Plehova NG, Somova LM. РОЛЬ МОНОЦИТОВ/МАКРОФАГОВ В ПАТОГЕНЕЗЕ ВИРУСНЫХ ИНФЕКЦИЙ (Russian) [The role of monocytes/macrophages in the pathogenesis of viral infections]. Tihookeanskij medicinskij zhurnal 2010; 3(41): 5–9.

Schwarz A, Schwarz T. UVR-induced regulatory T cells switch antigen-presenting cells from a stimulatory to a regulatory phenotype. J Invest Dermatol 2010; 130(7): 1914–1921. doi: 10.1038/jid.2010.59.


Refbacks

  • There are currently no refbacks.