Biochemical pathways and targeted therapies in basal cell carcinoma: A systematic review

Abstract - 668 PDF - 294
Bao Anh Patrick Tran, Tiffany Alexander, Ally-Khan Somani

Abstract


Basal cell carcinoma (BCC) is the most common type of human malignancy. It is a slow-growing skin cancer with little ability to metastasize, but it is aggressive and can cause local tissue destruction. Descriptions of Basal Cell Nevus Syndrome (BCNS), characterized by a predisposition to the formation of BCC and other neoplasms, and identification of the genetic defect in this syndrome, has led to significant advancement in our understanding of the pathogenesis of BCC. Unregulated expression of target genes in the sonic Hedgehog (SHH) signaling pathway plays a prominent role in the pathogenesis of BCC. An understanding of the signaling components has allowed for the development of pharmacologic agents that inhibit the SHH pathway. The first inhibitor of the SHH pathway approved by the Food and Drug Administration (FDA) for the treatment of BCC is vismodegib. In this review, we will discuss the biochemical pathways involved in BCC as targets of novel pharmacologic therapies.


Keywords


Basal cell carcinoma; nonmelanoma skin cancer; Hedgehog signaling; vismodegib

Full Text:

PDF

References


Lomas A, Leonardi-Bee J, Bath-Hextall F. A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol 2012; 166(5): 1069–1080. doi: 10.1111/j.1365-2133.2012.10830.x.

Correia de Sá TR, Silva R, Lopes JM. Basal cell carcinoma of the skin (part 1): Epidemiology, pathology and genetic syndromes. Future Oncol 2015; 11(22): 3011–3021. doi: 10.2217/fon.15.246.

Wang LC, Liu ZY, Gambardella L, Delacour A, Shapiro R, et al. Conditional disruption of Hedgehog signaling pathway defines its critical role in hair development and regeneration. J Invest Dermatol 2000; 114(5): 901–908. doi: 10.1046/j.1523-1747.2000.00951.x.

Abidi A. Hedgehog signaling pathway: A novel target for cancer therapy: Vismodegib, a promising therapeutic option in treatment of basal cell carcinomas. Indian J Pharmacol 2014; 46(1): 3–12. doi:10.4103/0253-7613.124884.

Ruch JM, Kim EJ. Hedgehog signaling pathway and cancer therapeutics: progress to date. Drugs 2013; 73(7): 613–623. doi: 10.1007/s40265-013-0045-z.

Fuse N, Maiti T, Wang B, Porter JA, Hall TMT, et al. Sonic hedgehog protein signals not as a hydrolytic enzyme but as an apparent ligand for patched. Proc Natl Acad Sci U S A 1999; 96(20): 10992–10999. doi: 10.1073/pnas.96.20.10992.

Hui CC, Angers S. Gli proteins in development and dis-ease. Annu Rev Cell Dev Biol 2011; 27: 513–537. doi: 10.1146/annurev-cellbio-092910-154048.

Atwood SX, Whitson RJ, Oro AE. Advanced treatment for basal cell carcinomas. Cold Spring Harb Perspect Med 2014; 4(7): a013581. doi:10.1101/cshperspect.a013581.

Wang C, Wu H, Katritch V, Han GW, Huang XP, et al. Structure of the human smoothened receptor bound to an antitumour agent. Nature 2013; 497(7449): 338–343. doi: 10.1038/nature12167.

Petrova R, Joyner AL. Roles for Hedgehog signaling in adult organ homeostasis and repair. Development 2014; 141(18): 3445–3457. doi: 10.1242/dev.083691.

Hatayama M, Aruga J. Gli protein nuclear localization signal. In: Litwack G, (editor). Hedgehog signaling: Volume 88 of vitamins and hormones. US: Academic Press; 2012. p. 73–89. doi:10.1016/B978-0-12-394622-5.00004-3.

Liem KF Jr, He M, Ocbina PJR, Anderson KV. Mouse Kif7/Costal2 is a cilia-associated protein that regulates Sonic Hedgehog signaling. Proc Natl Acad Sci U S A 2009; 106(32): 13377–13382. doi:10.1073/pnas.0906944106.

Proctor AE, Thompson LA, O’Bryant CL. Vismodegib: An inhibitor of the Hedgehog signaling pathway in the treatment of basal cell carcinoma. Ann Pharmacother 2014; 48(1): 99–106. doi: 10.1177/1060028013506696.

Evans DG, Farndon PA. Nevoid basal cell carcinoma syndrome. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, et al., (editors). GeneReviews. Seattle, WA: University of Washington; 1993–2016.

Hahn H, Wicking C, Zaphiropoulous PG, Gailani MR, Shanley S, et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 1996; 85(6): 841–851. doi: 10.1016/S009

-8674(00)81268-4.

DiGiovanna JJ, Kraemer KH. Shining a light on xero-derma pigmentosum. J Invest Dermatol 2012; 132(3 Pt 2): 785–796. doi: 10.1038/jid.2011.426.

Vabres P, Lacombe D, Rabinowitz LG, Aubert G, Anderson CE, et al. The gene for Bazex-Dupré-Christol syndrome maps to chromosome Xq. J Invest Dermatol 1995; 105(1): 87–91. doi: 10.1111/1523-1747.ep12313359.

Michaëlsson G, Olsson E, Westermark P. The Rombo syndrome: A familial disorder with vermiculate atrophoderma, milia, hypotrichosis, trichoepitheliomas, basal cell

carcinomas and peripheral vasodilation with cyanosis. Acta Derm Venereol 1981; 61(6): 497–503.

Parren LJMT, Frank J. Hereditary tumour syndromes featuring basal cell carcinomas. Br J Dermatol 2011; 165(1): 30–34. doi: 10.1111/j.1365-2133.2011.10334.x.

Reifenberger J, Wolter M, Knobbe CB, Köhler B, Schönicke A, et al. Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell

carcinomas. Br J Dermatol 2005; 152(1): 43–51. doi: 10.1111/j.1365-2133.2005.06353.x.

Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, et al. Mutational landscape and significance across 12 major cancer types. Nature 2013; 502(7471): 333–339. doi: 10.1038/nature12634.

Oro AE, Higgins KM, Hu Z, Bonifas JM, Epstein EH Jr, et al. Basal cell carcinomas in mice overexpressing sonic hedgehog. Science 1997; 276(5313): 817–821. doi: 10.1126/science.276.5313.817.

Xie J, Murone M, Luoh SM, Ryan A, Gu Q, et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 1998; 391(6662): 90–92. doi: 10.1038/34 201.

Nilsson M, Undèn AB, Krause D, Malmqwist U, Raza K, et al. Induction of basal cell carcinomas and tricho- epitheliomas in mice overexpressing GLI-1. Proc Natl Acad Sci U S A 2000; 97(7): 3438–3443. doi: 10.1073/pnas.97.7.3438.

Athar M, Li C, Kim AL, Spiegelman VS, Bickers DR. Sonic Hedgehog signaling in basal cell nevus syndrome. Cancer Res 2014; 74(18): 4967–4975. doi: 10.1158/0008-5472.CAN-14-1666.

Cook LM, Hurst DR, Welch DR. Metastasis suppressors and the tumor microenvironment. Semin Cancer Biol 2011; 21(2): 113–122. doi: 10.1016/j.semcancer.20 10.12. 005.

Bozdogan O, Yulug IG, Vargel I, Cavusoglu T, Karabulut AA, et al. Differential expression patterns of metastasis suppressor proteins in basal cell carcinoma. Int J Dermatol 2015; 54(8): 905–915. doi: 10.1111/ijd.12581.

von Domarus H, Stevens PJ. Metastatic basal cell carcinoma: Report of five cases and review of 170 cases in the literature. J Am Acad Dermatol 1984; 10(6): 1043–1060. doi: 10.1016/S0190-9622(84)80334-5.

Wysong A, Aasi SZ, Tang JY. Update on metastatic basal cell carcinoma: A summary of published cases from 1981 through 2011. JAMA Dermatol 2013; 149(5): 615–616. doi: 10.1001/jamadermatol.2013.3064.

National Comprehensive Cancer Network. Basal cell skin cancer (Version 1.2015) [Internet]. Fort Washington, PA: National Comprehensive Cancer Network; 2016 [cited 2014 Dec 11]. Available from: http://www.nccn.org/professionals/physician_gls/pdf/nmsc.pdf.

Braathen LR, Szeimies RM, Basset-Seguin N, Bis-sonnette R, Foley P, et al. Guidelines on the use of pho-todynamic therapy for nonmelanoma skin cancer: An international consensus. J Am Acad Dermatol 2007; 56(1): 125–143. doi: 10.1016/j.jaad.2006.06.006.

Wong SY, Dlugosz AA. Basal cell carcinoma, Hedgehog signaling, and targeted therapeutics: The long and winding road. J Invest Dermatol 2014; 134(e1): E18–E22. doi: 10.1038/skinbio.2014.4.

Von Hoff DD, LoRusso PM, Rudin CM, Reddy JC, Yauch RL, et al. Inhibition of the Hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med 2009; 361(12): 1164–1172. doi: 10.1056/NEJMoa0905360.

Sekulic A, Migden MR, Oro AE, Dirix L, Lewis KD, et al. Efficacy and safety of vismodegib in advanced ba-sal-cell carcinoma. N Engl J Med 2012; 366(23): 2171–2179. doi: 10.1056/NEJMoa1113713.

Axelson M, Liu K, Jiang X, He K, Wang J, et al. U.S. Food and Drug Administration approval: Vismodegib for recurrent, locally advanced, or metastatic basal cell car-cinoma. Clin Cancer Res 2013; 19(9): 2289–2293. doi: 10.1158/1078-0432.CCR-12-1956.

Sekulic A, Migden MR, Lewis K, Hainsworth JD, Solomon JA, et al. Pivotal ERIVANCE basal cell carcinoma (BCC) study: 12-month update of efficacy and safety of vismodegib in advanced BCC. J Am Acad Dermatol 2015; 72(6): 1021–1026.e8. doi: 10.1016/j.jaad.2015.03.021.

Sofen H, Gross KG, Goldberg LH, Sharata H, Hamilton TK, et al. A phase II, multicenter, open-label, 3-cohort trial evaluating the efficacy and safety of vismodegib in operable basal cell carcinoma. J Am Acad Dermatol 2015; 73(1): 99–105.e1. doi: 10.1016/j.jaad.2015.03.013.

Jimeno A, Weiss GJ, Miller WH Jr, Gettinger S, Eigl BJC, et al. Phase I study of the Hedgehog pathway inhibitor IPI-926 in adult patients with solid tumors. Clin Cancer Res 2013; 19(10): 2766–2774. doi: 10.1158/1078-04 32.CCR-12-3654.

Migden MR, Guminski A, Gutzmer R, Dirix L, Lewis KD, et al. Treatment with two different doses of sonidegib in patients with locally advanced or metastat-ic basal cell carcinoma (BOLT): A multicentre, randomised, double-blind phase 2 trial. Lancet Oncol 2015; 16(6): 716–728. doi: 10.1016/S1470-2045(15)70100-2.

Dummer R, Guminski A, Gutzmer R, Dirix L, Lewis KD, et al. The 12-month analysis from Basal Cell Carcinoma Outcomes with LDE225 Treatment (BOLT): A phase II, randomized, double-blind study of sonidegib in patients with advanced basal cell carcinoma. J Am Acad Dermatol 2016; 75(1): 113–25.e5. doi: 10.1016/j.jaad.2016.02.1226.

Tang T, Tang JY, Li D, Reich M, Callahan CA, et al. Targeting superficial or nodular basal cell carcinoma with topically formulated small molecule inhibitor of smooth-ened. Clin Cancer Res 2011; 17(10): 3378–3387. doi: 10.1158/1078-0432.CCR-10-3370.

Lauressergues E, Heusler P, Lestienne F, Troulier D, Rauly-Lestienne I, et al. Pharmacological evaluation of a series of smoothened antagonists in signaling pathways and after topical application in a depilated mouse model. Pharmacol Res Perspect 2016; 4(2): e00214. doi: 10.1002/prp2.214.

Riedlinger D, Bahra M, Boas-Knoop S, Lippert S, Bradtmöller M, et al. Hedgehog pathway as a potential treatment target in human cholangiocarcinoma. J Hepa-to-Biliary-Pancreat Sci 2014; 21(8): 607–615. doi: 10.1002/jhbp.107.

Akare UR, Bandaru S, Shaheen U, Singh PK, Tiwari G, et al. Molecular docking approaches in identification of High affinity inhibitors of human SMO receptor. Bioinformation 2014; 10(12): 737–742. doi: 10.6026/ 97320630010737.

Siu LL, Papadopoulos K, Alberts SR, Kirchoff-Ross R, Vakkalagadda B, et al. A first-in-human, phase I study of an oral Hedgehog (HH) pathway antagonist, BMS-833923 (XL139), in subjects with advanced or metastatic solid tumors. J Clin Oncol 2010; 28: 15s (suppl; abstr 2501).

Galimberti F, Busch AM, Chinyengetere F, Ma T, Sekula D, et al. Response to inhibition of smoothened in diverse epithelial cancer cells that lack smoothened or patched 1 mutations. Int J Oncol 2012; 41(5): 1751–1761. doi: 10.3892/ijo.2012.1599.

Wagner AJ, Messersmith WA, Shaik MN, Li S, Zheng X, et al. A phase I study of PF-04449913, an oral hedgehog inhibitor, in patients with advanced solid tumors. Clin Cancer Res 2015; 21(5): 1044–1051. doi: 10.1158/1078-0432.CCR-14-1116.

Fukushima N, Minami Y, Kakiuchi S, Kuwatsuka Y, Hayakawa F, et al. Small-molecule hedgehog inhibitor attenuates the leukemia-initiation potential of acute myeloid leukemia cells. Cancer Sci 2016. doi: 10.1111/cas.13019.

Giordani G, Barraco M, Giangrande A, Martinelli G, Guadagnuolo V, et al. The human Smoothened inhibitor PF-04449913 induces exit from quiescence and loss of multipotent drosophila hematopoietic progenitor cells. Oncotarget 2016; 7(34): 55313–55327. doi: 10.18632/oncotarget.10879.

Peukert S, He F, Dai M, Zhang R, Sun Y, et al. Discovery of NVP-LEQ506, a second-generation inhibitor of smoothened. ChemMedChem 2013; 8(8): 1261–1265. doi: 10.1002/cmdc.201300217.

Novartis Pharmaceuticals. A dose finding and safety study of oral LEQ506 in patients with advanced solid tumors. [Internet]. Switzerland: Novartis Pharmaceuticals; 2016 [updated 2016 Oct 7; cited 2014 Dec 14]. Available from: https://clinicaltrials.gov/ct2/show/NCT01106508.

Ishii T, Shimizu Y, Nakashima K, Kondo S, Ogawa K, et al. Inhibition mechanism exploration of investigational drug TAK-441 as inhibitor against vismodegib-resistant Smoothened mutant. Eur J Pharmacol 2014;723: 305–313. doi: 10.1016/j.ejphar.2013.11.014.

Goldman J, Gail Eckhardt S, Borad MJ, Curtis KK, Hidalgo M, et al. Phase I dose-escalation trial of the oral investigational Hedgehog signaling pathway inhibitor TAK-441 in patients with advanced solid tumors. Clin Cancer Res 2015; 21(5): 1002–1009. doi: 10.1158/1078-0432.CCR-14-1234.

Chen JK, Taipale J, Young KE, Maiti T, Beachy PA. Small molecule modulation of Smoothened activity. Proc Natl Acad Sci U S A 2002; 99(22): 14071–14076. doi: 10.1073/pnas.182542899.

Kim J, Tang JY, Gong R, Kim J, Lee JJ, et al. Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell 2010; 17(4): 388–399. doi: 10.1016/j.ccr.2010.02.027.

Kim J, Aftab BT, Tang JY, Kim D, Lee AH, et al. Itraconazole and arsenic trioxide inhibit Hedgehog pathway activation and tumor growth associated with acquired resistance to smoothened antagonists. Cancer Cell 2013; 23(1): 23–34. doi: 10.1016/j.ccr.2012.11.017.

Kim DJ, Kim J, Spaunhurst K, Montoya J, Khodosh R, et al. Open-label, exploratory phase II trial of oral itraconazole for the treatment of basal cell carcinoma. J Clin Oncol 2014; 32(8): 745–751. doi: 10.1200/JCO.2013.49.9525.

Ally MS, Ransohoff K, Sarin K, Atwood SX, Rezaee M, et al. Effects of combined treatment with arsenic trioxide and itraconazole in patients with refractory metastatic basal cell carcinoma. JAMA Dermatol 2016; 152(4): 452–456. doi: 10.1001/jamadermatol.2015.5473.

Bender MH, Hipskind PA, Capen AR, Cockman M, Credille KM, et al. Abstract 2819: Identification and characterization of a novel smoothened antagonist for the treatment of cancer with deregulated Hedgehog signaling. Cancer Res 2011; 71(8 Supplement): 2819–2819. doi: 10.1158/1538-7445.AM2011-2819.

DeBerardinis AM, Banerjee U, Miller M, Lemieux S, Hadden MK. Probing the structural requirements for vitamin D3 inhibition of the Hedgehog signaling pathway. Bioorg Med Chem Lett 2012; 22(14): 4859–4863. doi: 10.1016/j.bmcl.2012.05.037.

Brinkhuizen T, Frencken KJA, Nelemans PJ, Hoff MLS, Kelleners-Smeets NWJ, et al. The effect of topical diclofenac 3% and calcitriol 3 μg/g on superficial basal

cell carcinoma (sBCC) and nodular basal cell carcinoma (nBCC): A phase II, randomized controlled trial. J Am Acad Dermatol 2016; 75(1): 126–134. doi: 10.1016/j.jaad.2016.01.050.

Stanton BZ, Peng LF, Maloof N, Nakai K, Wang X, et al. A small molecule that binds Hedgehog and blocks its signaling in human cells. Nat Chem Biol 2009; 5(3): 154–156. doi: 10.1038/nchembio.142.

Kwong L, Bijlsma MF, Roelink H. Shh-mediated degradation of Hhip allows cell autonomous and non-cell autonomous Shh signalling. Nat Commun 2014; 5: 4849. doi: 10.1038/ncomms5849.

Maun HR, Wen X, Lingel A, de Sauvage FJ, Lazarus RA, et al. Hedgehog pathway antagonist 5E1 binds hedgehog at the pseudo-active site. J Biol Chem 2010; 285(34): 26570–26580. doi: 10.1074/jbc.M110.112284.

Chang Q, Foltz WD, Chaudary N, Hill RP, Hedley DW. Tumor-stroma interaction in orthotopic primary pancreatic cancer xenografts during Hedgehog pathway inhibition. Int J Cancer 2013; 133(1): 225–234. doi: 10.1002/ijc.28006.

Kim J, Lee JJ, Kim J, Gardner D, Beachy PA. Arsenic antagonizes the Hedgehog pathway by preventing ciliary accumulation and reducing stability of the Gli2 transcrip-tional effector. Proc Natl Acad Sci U S A 2010; 107(30): 13432–13437. doi: 10.1073/pnas.1006822107.

Tang JY. Arsenic trioxide in treating patients with basal cell carcinoma [Internet]. Stanford, California: Stanford University; 2016 [cited 2016 Sep 9]. Available from: https://clinicaltrials.gov/ct2/show/NCT01791894.

Sapijaszko MJA. Imiquimod 5% cream (Aldara) in the treatment of basal cell carcinoma. Skin Ther Lett 2005; 10(6): 2–5.

Wolff F, Loipetzberger A, Gruber W, Esterbauer H, Aberger F, et al. Imiquimod directly inhibits Hedgehog signalling by stimulating adenosine receptor/protein kinase A-mediated GLI phosphorylation. Oncogene 2013; 32(50): 5574–5581. doi: 10.1038/onc.2013.343.

Roozeboom MH, Arits AHMM, Mosterd K, Sommer A, Essers BAB, et al. Three-year follow-up results of pho-todynamic therapy vs. imiquimod vs. fluorouracil for treatment of superficial basal cell carcinoma: A single-blind, noninferiority, randomized controlled trial. J Invest Dermatol 2016; 136(8): 1568–1574. doi: 10.1016/j.jid.2016.03.043.

Srivastava RK, Kaylani SZ, Edrees N, Li C, Talwelkar SS, et al. GLI inhibitor GANT-61 diminishes embryonal and alveolar rhabdomyosarcoma growth by inhibiting Shh/AKT-mTOR axis. Oncotarget 2014; 5(23): 12151–12165. doi: 10.18632/oncotarget.2569.

Arnhold V, Boos J, Lanvers-Kaminsky C. Targeting Hedgehog signaling pathway in pediatric tumors: In vitro evaluation of SMO and GLI inhibitors. Cancer Chemother Pharmacol 2016; 77(3): 495–505. doi: 10.1007/s00 280-016-2962-5.

Hou X, Chen X, Zhang P, Fan Y, Ma A, et al. Inhibition of Hedgehog signaling by GANT58 induces apoptosis and shows synergistic antitumor activity with AKT inhibitor in acute T cell leukemia cells. Biochimie 2014; 101: 50–59. doi: 10.1016/j.biochi.2013.12.019.

Silapunt S, Chen L, Migden MR. Hedgehog pathway inhibition in advanced basal cell carcinoma: Latest evidence and clinical usefulness. Ther Adv Med Oncol 2016; 8(5): 375–382. doi: 10.1177/1758834016653605.

Chang ALS, Oro AE. Initial assessment of tumor regrowth after vismodegib in advanced basal cell carcino-ma. Arch Dermatol 2012; 148(11): 1324–1325. doi: 10.1001/archdermatol.2012.2354.

Pricl S, Cortelazzi B, Dal Col V, Marson D, Laurini E, et al. Smoothened (SMO) receptor mutations dictate re-sistance to vismodegib in basal cell carcinoma. Mol Oncol 2015; 9(2): 389–397. doi: 10.1016/j.molonc.20 14.09.003.

Cowey CL. Targeted therapy for advanced ba-sal-cell carcinoma: Vismodegib and beyond. Dermatol Ther 2013; 3(1): 17–31. doi: 10.1007/s13555-013-00 19-9.

Atwood SX, Sarin KY, Whitson RJ, Li JR, Kim G, et al. Smoothened variants explain the majority of drug re-sistance in basal cell carcinoma. Cancer Cell 2015; 27(3): 342–353. doi: 10.1016/j.ccell.2015.02.002.

Sharpe HJ, Pau G, Dijkgraaf GJ, Basset-Seguin N, Mo-drusan Z, et al. Genomic analysis of smoothened inhibitor resistance in basal cell carcinoma. Cancer Cell 2015; 27(3): 327–341. doi: 10.1016/j.ccell.2015.02.001.

Shimizu Y, Ishii T, Ogawa K, Sasaki S, Matsui H, et al.

Biochemical characterization of smoothened receptor an-tagonists by binding kinetics against drug-resistant mutant. Eur J Pharmacol 2015; 764: 220–227. doi: 10.1016/j.ejphar.2015.05.062.

Danial C, Sarin KY, Oro AE, Chang ALS. An investiga-tor-initiated open-label trial of sonidegib in advanced ba-sal cell carcinoma patients resistant to vismodegib. Clin Cancer Res 2016; 22(6): 1325–1329. doi: 10.1158/1078-0432.CCR-15-1588.

Basset-Seguin N, Hauschild A, Grob J-J, Kunstfeld R, Dréno B, et al. Vismodegib in patients with advanced ba-sal cell carcinoma (STEVIE): A pre-planned interim analysis of an international, open-label trial. Lancet Oncol 2015; 16(6): 729–736. doi: 10.1016/S1470-20 45(15)70198-1.

Khoo ABS, Ali FR, Lear JT. Defining locally ad-vanced basal cell carcinoma and integrating smoothened inhibitors into clinical practice. Curr Opin Oncol 2016; 28(2): 180–184. doi: 10.1097/CCO.0000000000000259.

Tang JY, Mackay-Wiggan JM, Aszterbaum M, Yauch RL, Lindgren J, et al. Inhibiting the Hedgehog pathway in pa-tients with the basal-cell nevus syndrome. N Engl J Med 2012; 366(23): 2180–2188. doi: 10.1056/NEJMoa11 13538.

Fellner C. Vismodegib (erivedge) for advanced ba-sal cell carcinoma. P T 2012; 37(12): 670–682.


Refbacks

  • There are currently no refbacks.